Analyzing the factors effecting the passenger car breakdowns using Com-Poisson GLM
نویسنده
چکیده
Number of breakdowns experienced by a machinery is a highly under-dispersed count random variable and its value can be attributed to the factors related to the mechanical input and output of that machinery. Analyzing such under-dispersed count observations as a function of the explanatory factors has been a challenging problem. In this paper, we aim at estimating the effects of various factors on the number of breakdowns experienced by a passenger car based on a study performed in Mauritius over a year. We remark that the number of passenger car breakdowns is highly under-dispersed. These data are therefore modelled and analyzed using Com-Poisson regression model. We use quasi-likelihood estimation approach to estimate the parameters of the model. Under-dispersion parameter is estimated to be 2.14 justifying the appropriateness of Com-Poisson distribution in modelling under-dispersed count responses recorded in this study. Keywords—Breakdowns, Under-dispersion, Com-Poisson, Generalized Linear Model, Quasi-likelihood estimation
منابع مشابه
A comparison of marginal and joint generalized quasi-likelihood estimating equations based on the Com-Poisson GLM: Application to car breakdowns data
In this paper, we apply and compare two generalized estimating equation approaches to the analysis of car breakdowns data in Mauritius. Number of breakdowns experienced by a machinery is a highly under-dispersed count random variable and its value can be attributed to the factors related to the mechanical input and output of that machinery. Analyzing such under-dispersed count observation as a ...
متن کاملApplication of the Conway-Maxwell-Poisson generalized linear model for analyzing motor vehicle crashes.
This paper documents the application of the Conway-Maxwell-Poisson (COM-Poisson) generalized linear model (GLM) for modeling motor vehicle crashes. The COM-Poisson distribution, originally developed in 1962, has recently been re-introduced by statisticians for analyzing count data subjected to over- and under-dispersion. This innovative distribution is an extension of the Poisson distribution. ...
متن کاملCharacterizing the Performance of the Bayesian Conway-maxwell Poisson Generalized Linear Model
This paper documents the performance of a Bayesian Conway-Maxwell-Poisson (COM-Poisson) generalized linear model (GLM). This distribution was originally developed as an extension of the Poisson distribution in 1962 and has a unique characteristic, in that it can handle both under-dispersed and over-dispersed count data. Previous work by the authors lead to the development of a dual-link GLM bas...
متن کاملEvaluating the double Poisson generalized linear model.
The objectives of this study are to: (1) examine the applicability of the double Poisson (DP) generalized linear model (GLM) for analyzing motor vehicle crash data characterized by over- and under-dispersion and (2) compare the performance of the DP GLM with the Conway-Maxwell-Poisson (COM-Poisson) GLM in terms of goodness-of-fit and theoretical soundness. The DP distribution has seldom been in...
متن کاملExtension of the application of conway-maxwell-poisson models: analyzing traffic crash data exhibiting underdispersion.
The objective of this article is to evaluate the performance of the COM-Poisson GLM for analyzing crash data exhibiting underdispersion (when conditional on the mean). The COM-Poisson distribution, originally developed in 1962, has recently been reintroduced by statisticians for analyzing count data subjected to either over- or underdispersion. Over the last year, the COM-Poisson GLM has been e...
متن کامل